Femoropopliteal Above-Knee Bypass: The True Results

Lise Pyndt Jørgensen, Camilla Rasmussen & Torben V Schroeder

Rigshospitalet and University of Copenhagen, DENMARK
Treatment options in the femoropopliteal segment

BMT + Stop smoking and keep walking

Bypass surgery
- Vein – in situ, reversed, arm vein etc.
- Umbilical vein
- Prosthetic graft – PTFE, dacron, Heparin bonded prosthetic graft
- …

Endovascular options in the SFA segment
Percutaneous infra-inguinal revascularization carries a low risk of morbidity and mortality, is well accepted by patients, does not prevent ultimate surgical revascularization if necessary and consequently should be considered the first-line therapy for chronic lower extremity ischemia.
Factors influencing indication for treating SFA lesions

- **Claudication that interferes with the patient’s life**
- **Rest pain**
- **Ulceration, gangrene**
Factors influencing choice of treatment

- Severity of disease
 - Clinical: Claudication vs CLI
 - Anatomical:
 - Lesion length; degree of obstruction; inflow/outflow; TASC

Increasingly complex disease can be managed using endovascular techniques

TASC A: endovascular treatment
TASC B & C: can be treated using either
TASC D: surgery, owing to endovascular treatment’s prohibitive failure rate

TASC II 2007

Type A lesions:
- Single stenosis ≤3 cm in length
- Single occlusion ≤3 cm in length

Type B lesions:
- Multiple lesions (stenoses or occlusions), each ≤3 cm
- Single stenosis or occlusion >3 cm not involving the infrapopliteal popliteal artery
- Single or multiple lesions in the absence of continuous distal vessels to improve inflow for a distal bypass
- Heavily calcified occlusions >3 cm in length
- Single popliteal stenosis

Type C lesions:
- Multiple stenoses or occlusions totaling >15 cm with or without heavy calcification
- Recurrent stenoses or occlusions that need treatment after two endovascular interventions

Type D lesions:
- Chronic total occlusion of CFA or SFA >20 cm, involving the popliteal artery
- Chronic total occlusion of popliteal artery and proximal trifurcation vessels

TASC classification of femoral-popliteal lesions. CFA = common femoral artery; SFA = superficial femoral artery
Factors influencing choice of treatment

• Severity of disease
 • Clinical: Claudication vs CLI
 • Anatomical:
 • Lesion length; degree of obstruction; inflow/outflow; TASC

• Risk factors and comorbidities
 • Age, Gender, Smoking, DM, CAD, Lungs, Renal ...

• Availability of vein
 • Autologous vein:
 Always first choice if available
 • Prosthetic grafts
 The secondary choice – above as well as below the knee
The immediate answer to “The true Fem-Pop results” is to look at which graft type produces the best results.

Searched relevant databases for results of fempop AK from published RCTs on:

- Vein grafts
 - In situ
 - Reversed GSV
- Prosthetic grafts
 - Human umbilical vein
 - PTFE
 - Dacron
- Trials on adjuvant procedures left for JB

13 trials were identified:

- 1987-99: 7
- 2000-09: 6
- 2010 or newer: 0
<table>
<thead>
<tr>
<th>Author, year</th>
<th>Objective</th>
<th>Participants</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moody (1992)(^9)</td>
<td>In situ vs GSV</td>
<td>n = 226; CI ?</td>
<td>PP = 62 vs 64 % at 5 years (n.s.)</td>
</tr>
<tr>
<td>Watelet (1997)(^10)</td>
<td>In situ vs GSV</td>
<td>n = 100; CI:7%</td>
<td>P = 76 vs 48 % at 5 years</td>
</tr>
<tr>
<td>AbuRahma (1999)(^11)</td>
<td>GSV vs PTFE</td>
<td>n = 86; All CI</td>
<td>PP = 76 vs 68 % at 5 years (n.s.)</td>
</tr>
<tr>
<td>Klinkert (2003)(^12)</td>
<td>GSV vs PTFE</td>
<td>n = 151; CI:79 %</td>
<td>PP = 76 vs 52 % at 5 years (p=0.035)</td>
</tr>
<tr>
<td>Ballotta (2003)(^13)</td>
<td>GSV vs PTFE</td>
<td>n = 102; All CI</td>
<td>PP = 94 vs 84% at 5 years (p=0.09)</td>
</tr>
<tr>
<td>Tofigh (2007)(^14)</td>
<td>GSV vs polyester</td>
<td>n = 85; CI:87%</td>
<td>PP = 81 vs 67% at 2 year (p=0.065)</td>
</tr>
<tr>
<td>Eickhoff (1987)(^15)</td>
<td>PTFE vs HUV</td>
<td>n = 105; CI:24%</td>
<td>PP = 22 vs 42 % at 4 years</td>
</tr>
<tr>
<td>McCollum (1991)(^16)</td>
<td>PTFE vs HUV</td>
<td>n = 191; CI:30%</td>
<td>PP = 56 vs 63 % at 2 years (n.s.)</td>
</tr>
<tr>
<td>Aalders (1992)(^17)</td>
<td>PTFE vs HUV</td>
<td>n = 96; CI:80%</td>
<td>PP = 39 vs 75 % at 5 years</td>
</tr>
<tr>
<td>Abbott (1997)(^18)</td>
<td>PTFE vs Dacron</td>
<td>n = 240; CI ?</td>
<td>PP = 57 vs 62 % at 3 years</td>
</tr>
<tr>
<td>Post (2001)(^19)</td>
<td>PTFE vs Dacron</td>
<td>n = 194; CI:46%</td>
<td>PP = 62 vs 70 % at 3 years (p=0.35)</td>
</tr>
<tr>
<td>Jensen (2007)(^20)</td>
<td>PTFE vs Dacron</td>
<td>n = 413; CI:66%</td>
<td>PP = 57 vs 70 % at 2 years (p=0.02)</td>
</tr>
<tr>
<td>Van Det (2009)(^21)</td>
<td>PTFE vs Dacron</td>
<td>n = 228; CI:86%</td>
<td>PP = 36 vs 52 % at 5 years</td>
</tr>
</tbody>
</table>
In-situ graft technique vs. reversed greater saphenous vein (GSV)

2 RCT + Cochrane Database Syst Review (Twine et al 2010)

Conclusion: **no convincing difference**

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Objective</th>
<th>Participants</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moody (1992)9</td>
<td>In situ vs GSV</td>
<td>n = 226; CI ?</td>
<td>(unknown)</td>
</tr>
<tr>
<td>Watelet (1997)10</td>
<td>In situ vs GSV</td>
<td>n = 100; CI:7%</td>
<td>(25 AK/75 BK)</td>
</tr>
</tbody>
</table>

PP = 62 % vs 64 % at 5 years (n.s.)
P = 76 vs 48 % at 5 years
Vein (GSV) vs. Prosthetic graft

4 RCT + Cochrane Database Syst Review (Twine et al 2010)

Conclusion: **Vein better than prosthetic (PTFE) graft**
Prosthetic graft (PTFE) vs. Human umbilical vein (HUV)

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Objective</th>
<th>Participants</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moody (1992)⁹</td>
<td>In situ vs GSV</td>
<td>n = 226; CI ?</td>
<td>PP = 62 vs 64 % at 5 years (n.s.)</td>
</tr>
<tr>
<td>Watelet (1997)¹⁰</td>
<td>In situ vs GSV</td>
<td>n = 100; CI:7%</td>
<td>P = 76 vs 48 % at 5 years</td>
</tr>
<tr>
<td>AbuRahma (1999)¹¹</td>
<td>GSV vs PTFE</td>
<td>n = 86; All CI</td>
<td>PP = 76 vs 68 % at 5 years</td>
</tr>
<tr>
<td>Klinkert (2003)¹²</td>
<td>GSV vs PTFE</td>
<td>n = 151; CI:79 %</td>
<td>PP = 76 vs 52 % at 5 years (p=0.035)</td>
</tr>
<tr>
<td>Ballotta (2003)¹³</td>
<td>GSV vs PTFE</td>
<td>n = 102; All CI</td>
<td>PP = 94 vs 84% at 5 years (p=0.09)</td>
</tr>
<tr>
<td>Tofigh (2007)¹⁴</td>
<td>GSV vs polyester</td>
<td>n = 85; CI:87%</td>
<td>PP = 81 vs 67% at 2 year (p=0.065)</td>
</tr>
<tr>
<td>Eickhoff (1987)¹⁵</td>
<td>PTFE vs HUV</td>
<td>n = 105; CI:24%</td>
<td>PP = 22 vs 42 % at 4 years</td>
</tr>
<tr>
<td>McCollum (1991)¹⁶</td>
<td>PTFE vs HUV</td>
<td>n = 191;:30%</td>
<td>PP = 56 vs 63 % at 2 years (n.s.)</td>
</tr>
<tr>
<td>Aalders (1992)¹⁷</td>
<td>PTFE vs HUV</td>
<td>n = 96; CI:80%</td>
<td>PP = 39 vs 75 % at 5 years</td>
</tr>
</tbody>
</table>

3 RCT : Conclusion: **Human umbilical vein** better than **PTFE**
Prosthetic grafts: PTFE vs. Dacron

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Objective</th>
<th>Participants</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moody (1992)</td>
<td>In situ vs GSV</td>
<td>n = 226; CI ? (unknown)</td>
<td>PP = 62 vs 64 % at 5 years (n.s.)</td>
</tr>
<tr>
<td>Watelet (1997)</td>
<td>In situ vs GSV</td>
<td>n = 100; CI:7% (25 AK/75 BK)</td>
<td>P = 76 vs 48 % at 5 years</td>
</tr>
<tr>
<td>AbuRahma (1999)</td>
<td>GSV vs PTFE</td>
<td>n = 86; All CI</td>
<td>(All AK)</td>
</tr>
<tr>
<td>Klinkert (2003)</td>
<td>GSV vs PTFE</td>
<td>n = 151; CI:79 %</td>
<td>(All AK)</td>
</tr>
<tr>
<td>Ballotta (2003)</td>
<td>GSV vs PTFE</td>
<td>n = 102; All CI</td>
<td>(All AK)</td>
</tr>
</tbody>
</table>

4 RCT + Cochrane Database Syst Review (Twine et al 2010)

Prosthetic grafts: PTFE vs. Dacron

Conclusion: **Dacron** is better than **PTFE** (at 24 and 60 months)

<table>
<thead>
<tr>
<th>Aalders (1992)</th>
<th>PTFE vs HUV</th>
<th>n = 96; CI:80%</th>
<th>(All AK)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abbott (1997)</td>
<td>PTFE vs Dacron</td>
<td>n = 240; CI ?</td>
<td>(All AK)</td>
</tr>
<tr>
<td>Post (2001)</td>
<td>PTFE vs Dacron</td>
<td>n = 194; CI:46%</td>
<td>(141 AK/53 BK)</td>
</tr>
<tr>
<td>Jensen (2007)</td>
<td>PTFE vs Dacron</td>
<td>n = 413; CI:66%</td>
<td>(All AK)</td>
</tr>
<tr>
<td>Van Det (2009)</td>
<td>PTFE vs Dacron</td>
<td>n = 228; CI:86%</td>
<td>(All AK)</td>
</tr>
</tbody>
</table>

PP = 57 vs 62 % at 3 years
PP = 62 vs 70 % at 3 years (p=0.35)
PP = 57 vs 70 % at 2 years (p=0.02)
PP = 36 vs 52 % at 5 years
The graft material hierarchy in the femopop AK position:

<table>
<thead>
<tr>
<th>Author, year</th>
<th>Objective</th>
<th>Participants</th>
<th>Results</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moody (1992)</td>
<td>In situ vs GSV</td>
<td>n = 226; CI ?</td>
<td>(unknown) PP = 62 vs 64 % at 5 years (n.s.)</td>
</tr>
<tr>
<td>Watelet (1997)</td>
<td>In situ vs GSV</td>
<td>n = 100; CI:7%</td>
<td>(25 AK/75 BK) P = 76 vs 48 % at 5 years</td>
</tr>
<tr>
<td>AbuRahma (1996)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Klinkert (2003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ballotta (2003)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tofigh (2007)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eickhoff (1987)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McCollum (1992)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aalders (1992)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abbott (1997)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post (2001)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jensen (2007)</td>
<td>PTFE vs Dacron</td>
<td>n = 413; CI:66%</td>
<td>(All AK)</td>
</tr>
<tr>
<td>Van Det (2009)</td>
<td>PTFE vs Dacron</td>
<td>n = 228; CI:86%</td>
<td>(All AK)</td>
</tr>
</tbody>
</table>

GSV ~ in situ vein ? Human umbilical vein

Dacron

PTFE
Factors influencing choice of treatment

• Severity of disease
 • Clinical: Claudication vs CLI
 • Anatomical:
 • Lesion length; degree of obstruction; inflow/outflow; TASC I-IV
• Risk factors and comorbidities
 • Age, Gender, Smoking, DM, CAD, Lungs, Renal ...
• Availability of vein

• Patients perception of disease severity
• Preference of the patient
• Preference of the phycisian
• Availability of endovascular technichnues
• Ongoing research projects
Factors influencing choice of treatment

- Severity of disease
 - Clinical: Claudication vs CLI
 - Anatomical:
 - Lesion length; degree of obstruction; inflow/outflow; TASC I-IV
- Risk factors and comorbidities
 - Age, Gender, Smoking, DM, CAD, Lungs, Renal ...
- Availability of vein
- Patients perception of disease severity
- Preference of the patient
- Preference of the physician
- Availability of endovascular techniques
- Ongoing research projects
- MIP = Mild Industrial Pressure
- Economy
Which parameters/endpoints are most relevant to compare results obtained with different methods?

Seen from the perspective of
- The patient
- The physician
- The society
- The medical company
Which parameters/endpoints are most relevant to compare results obtained with different methods?

Seen from the perspective of

- The patient
- The physician
- The society
- The medical company

- Patency (pp, sp ...)
- Haemodynamics (flow, ABI, TcPO2 ...)
- Restenosis rate
- Complications (m&m, stent fractures ...)
- Survival (life, limb, wound)
- Physical performance (walking distance...)
- Quality of Life (generic or disease specific ...)
- Economy (patient, society, physician, company...)
Remember

Risk factor modification for every patient.
- Stop Smoking, Decrease lipid levels, Reduce blood pressure
- Loose weight, Daily exercise, Better regulation of Diabetes

Relative 5-year PAD mortality rates versus other common pathologies

- Breast cancer
- Hodgkin's disease
- PAD
- Colon and rectal cancer
- CLI
- Lung cancer

Fig. A8. Survival of patients with peripheral arterial disease. IC – intermittent claudication; CLI – critical limb ischemia.

Inter-Society Consensus for the Management of Peripheral Arterial Disease (TASC II)

Thank You