Biomechanical Issues in the Aortic Arch

ESVB 2013 Strasbourg

by

Dr. Frédéric HEIM
Aortic arch: biomechanical issues

- complex geometry of the aortic arch
- forces induced (pressure, flow)
- mechanical behavior

10% of the AA

difficult to treat
from basic models......

to real geometry......!!
• tortuous geometry to reach implantation position

 → *risk of injuring vessel*

• endograft undergoes deformation once implanted (torsion, flexure, compression…)

 → *specific stress in the device*

 → *geometry match is not controlled (migration..)*
Pressure forces

at implantation time

Initial configuration

balance configuration:
- graft segments still compressed
- vessel wall under tension

from diastole to systole

systole
Consequences = compromise must be found...

1. stent segments must be sufficiently compressed.....

Pressure forces

contact rupture = migration risk
2. ...but not too much

- **issues with endograft positioning**

1. **at rest**
 - fabric is under tension

2. **once implanted**
 - radial force = possible fabric slight folding
stress in the biological tissue

stress >> 0.25 Mpa
(native tissue)
Flow forces / shearing force

\[\tau = \frac{32 \cdot \mu \cdot Q}{\pi d^3} \]

\[F_{\text{shearing}} = \left(\frac{32 \cdot \mu \cdot Q}{\pi d^3} \right) \times \text{Inner Surface Area} \]

…..graft migration risk
Flow forces / drag force

\[F_x = -Q_m^2 / S [\sin \alpha_2 - \sin \alpha_1] + P_1.S.\sin \alpha_1 - P_2.S.\sin \alpha_2 \]

\[F_y = Q_m^2 / S [\cos \alpha_2 - \cos \alpha_1] + P_1.S.\cos \alpha_1 + P_2.S.\cos \alpha_2 \]

if \(\alpha_1 = \alpha_2 \)
\[F_x = 0 \]

…..graft migration risk

F.Heim / Biomechanical issues in the aortic arch
Flow forces / pulse force

\[P_1 = P_2 + \rho a L \]

\[F_{\text{pulse}} = \Delta P \times \text{obstructed area} \]

acceleration

_____.. graft migration risk
what about the segments material…?

1. stress level
 ➔ traumatism level
 ➔ rigidity

F.Heim / Biomechanical issues in the aortic arch
what about the segments material…?

1. stress level
 - traumatism level
 - rigidity

2. elastic deformation range
 - at implantation (no balloon)
 - compliance respect

Stress

Strain

- loading
- unloading

F.Heim / Biomechanical issues in the aortic arch
what about the segments material…?

1. stress level
 ➔ traumatism level
 ➔ rigidity

2. elastic deformation range
 ➔ at implantation (no balloon)
 ➔ compliance respect

3. load / unload behavior
Conclusions

- tortuous geometry to reach implantation position

 risk of injuring vessel

- endograft undergoes deformation (specific flow conditions)

 migration risk

 endoleak

TAA Endografting = efficient technology (short term)
BUT.....
still requires to be optimized (design, materials...)
Thanks for attention